Atmosphere

Atmosphere layers
The air completely surrounds the Earth and literally wraps it up in a shroud that, under the effect of gravity and centrifugal force caused by the Earth's rotation, takes a spheroid shape (think of the shape of an egg), flatter at the poles and bulging at the Equator. This is why, even if its boundaries with the interplanetary spaces cannot be accurately identified, it has been called atmosphere (from the Greek atmòs = steam, and sfaira = sphere). A number of layers (spheres) can be identified in the atmosphere; these layers are concentric with the Earth and have different temperatures and chemical properties. Starting from the Earth’s surface (the soil) and going up, we find: the troposphere, the stratosphere, the mesosphere, the thermosphere and the exosphere.

The troposphere
It is the first layer of the atmosphere, the one we live on. The heat that comes from the Earth’s surface warms this layer up and therefore the temperature diminishes when it goes upwards. In the troposphere the air always moves. The troposphere is characterized by atmospheric phenomena like the wind, cloud formation, precipitations, etc. Immediately above it, at a height that varies from the 8 km above the Poles and 18 km above the Equator, there is the tropopause, that represents that passage to the stratosphere.

The stratosphere
In this layer there is no phenomena determined by atmospheric turbulences, as it happens in all the next layers. Here the temperature increases as the height increases, since the ozone layer that is present in this area directly absorbs a part of solar radiations. The stratopause is the border with the mesosphere and it is located at 50 km of height.

The mesosphere
In this layer the temperature diminishes as the height increases. In fact the heat arrives from the Earth’s surface, which is quite far. At around 100 km of height, there is the thermal minimum temperature. The mesopause is located here, representing the passage to the thermosphere.

The thermosphere
The temperature in this layer increases as the height increases. The density of the gases diminished when they go up.

Exosphere
This is the most external layer of the atmosphere. It is also the least known. Researches have calculated that its temperature even exceeds 2000 °C.

Origins of the atmosphere
We do not know much about the origins of the current atmosphere of the Earth nor about that of other planets. It might have formed during the aggregation of the planet or during catastrophic events or even slowly and relentlessly over the geological ages. According to the most recent assumptions, the nitrogen, carbon dioxide and water vapour that are presently contained in the atmosphere must have been generated by volcanic events and chemical reactions that occurred approximately 3.8 billion years ago, when the Earth already had a superficial crust and its temperature was low enough to prevent the gases coming from inside the planet from dispersing into the space. Oxygen is thought to have formed later, both through the decomposition of water vapour, under the effect of electric discharges and solar radiations in the high atmosphere, and by the carbon dioxide contained in the atmosphere through the function of the chlorophyll in the photosynthesis, that began as the first auto-trophic organisms (vegetables species) made their appearance on Earth.

Reasons why the atmosphere is useful
The atmosphere protects Earth from harmful solar radiations and regulates heating provided by the Sun. The first function is made possible by ozone existing in the stratosphere, the second function is achieved by a mix of gases existing in the whole atmosphere called “greenhouse gases”. Ozone accumulating in the stratosphere (called "stratospheric ozone") is crucial for the survival of life on Earth as it constitutes a sort of natural screen for a part of solar...
radiations that are invisible to humans and are located in the ultraviolet region (frequency from 100 to 400 nm). If these radiations reached the soil they would cause genetic mutations, skin tumours and many other damages to flora and fauna. Moreover, stratospheric ozone plays a fundamental role for the formation of clouds and rain as it heats up and blocks water vapour in the lower layers of the atmosphere. Greenhouse gases, instead, are responsible for the heating of the lower atmosphere and Earth’s surface. The characteristic of these gases, in fact, is being transparent to light radiations (short-wave) coming from the Sun and absorbing thermal radiations (long-wave) emitted and diffused on Earth’s surface. As panes in a greenhouse, they allow the entrance of solar light radiations but intercept thermal radiations coming back from Earth’s surface, thus keeping high the temperature in the lower atmosphere. The most important greenhouse gas is water vapour which, alone, manages to make the atmospheric temperature rise by about 30°C. In order of importance follow carbon dioxide (CO₂), methane (CH₄), nitrogen oxides (NOₓ) and ozone (O₃).

The study of the atmosphere

The first scientific studies on the composition of the atmosphere started in the 18th century. The nature of air, in fact, remained a mystery for a long time and only after 1770 Joseph Priestley (1733-1804), known for his pioneering studies on the atmosphere, demonstrated that air contains something indispensable for the life of animals, oxygen, which will be defined with this word by Lavoisier some years after its discovery. Priestley also discovered that animals and humans “consume air” and that plants can renew and purify it. Priestley managed to demonstrate this with a peculiar experiment. He gathered breathed air (hence rich in CO₂) and closed it hermetically in two containers, an empty one, and another one containing a plant. After seven days, he introduced a small mouse in each container and he observed that the small mouse positioned in the container without the plant died before the other one positioned in the container with the plant. The process responsible for these phenomena, photosynthesis, was discovered only one hundred years later, in 1862.

As Priestley lived close to a brewery, moreover, he got interested in fermentation processes. He studied the characteristics of the gas released during these processes (which today is known as carbon dioxide) and, adding it to water, he invented sparkling water.

The French chemist Antoine Lavoisier (1743-1794), father of modern chemistry, carried out important researches to understand the nature of combustion. With his experiments he demonstrated that combustion is a process that uses oxygen. The explanation of combustion given by Lavoisier replaced the phlogiston theory, which stated that materials that burn release a substance called phlogiston. He continued the studies started by Priestley also proving the role played by oxygen for plant and animal breathing as well as rusting of metals. He discovered, moreover, that hydrogen combines with oxygen to produce a dew that looked like water. Hydrogen had been discovered in 1766 by Henry Cavendish which obtained it from the reaction between metals and sulphuric acid and described it as “inflammable air coming from metals”. Antoine Lavoisier named it “hydrogenium”, which means “substance used to obtain water”, precisely after his discovery. In 1781 he discovered the formation reaction of carbon dioxide starting from carbon and oxygen.

Daniel Rutherford is considered the discoverer of nitrogen, even if this element had already been identified by Priestley, Scheele and Cavendish. Black, discoverer of fixed air (carbon dioxide) had observed that, when burning a “carbonaceous” substance in a closed container and absorbing carbon dioxide that developed within it with caustic soda (KOH), a gaseous residue (nitrogen) remained in the container. Rutherford, which studied this gas in 1772, noticed that it didn’t feed combustion and breathing but didn’t recognize it as a distinct chemical element and considered it as air saturated with phlogiston. It was Lavoisier who recognized that air is a combination of an active gas, oxygen, that feeds combustion and breathing, and an inactive gas, nitrogen. The term “nitrogen” derived from the French azoté (an entry formulated by the same Lavoisier) that means “deprived of life” as this gas isn’t necessary for breathing.

James Glaisher and Henry Tracey Coxwell in the 19th century risked their life venturing in the sky with an aerostatic balloon to explore the atmosphere. In this way they discovered that as the altitude rises, the air temperature diminishes and they made numerous measurements of humidity in the air. It has been estimated that their flights went beyond 9,500
metres over the sea level.

At the end of the 19th and 20th century interest moved to the research of minor components of the atmosphere, existing in small concentrations. A particularly important discovery for atmospheric chemistry was the discovery of ozone made by chemist Christian Friedrich Schönbein in 1840. As he was making experiments on slow oxidation of white phosphor and electrolysis of water, Schönbein was the first to notice the characteristic smell of ozone that he associated to the smell of atmospheric discharges of lightning during a storm. He coined the term “ozone” from the greek ozein, to smell.

In the 20th century science of the atmosphere proceeded to the study of the composition of air and to the consideration of how concentrations of gases existing as traces in the atmosphere had modified over time and of chemical processes that create and destroy compounds in the air. Two particularly important examples of this were the explanation of how the ozonosphere forms and maintains itself by Sydney Chapman and Gordon Dobson and the explanation on smog by Haagen-Smit.